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Theoretical developments on the optical properties of highly turbid waters and sea ice
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Abstract

The photon diffusion equation is derived in a direct manner from the radiative transfer equation and is shown
to be an asymptotic equation that can be directly related to asymptotic radiative transfer theory. Diffusion theory
predicts that the asymptotic diffuse attenuation coefficient, K., is related to the beam attenuation coefficient, c,
the single scattering albedo, w,, and the asymmetry parameter, g, of the scattering phase function by K, =

cV3[1

-~ w0, — glw, —

w,?)]. Kirk has previously published a K relationship based entirely on Monte Carlo
radiative transfer simulations that can be expressed in the form K, = ¢V1 — 2w, + ®,2 + G(w, —

,?), where

G is a regression parameter. Equating these two results gives G = 3(1 — g) + 2(l/w, — 1), showing explicitly,
as Kirk found numerically, how G is a function of w, and g. These results are expected to be valid for highly
turbid water where w, > 0.95. Comparison of the analytical expression for G with Kirk’s regression value, using

w, of 0.99, differed by only 2%.

The forward problem in radiative transfer theory is con-
sidered solved in the sense that existing numerical models
can accurately compute the light field propagating through
an absorbing and scattering medium, given the inherent op-
tical properties (IOPs) of the medium and appropriate bound-
ary conditions (Mobley et al. 1993). Nonetheless, it is still
quite useful to search for simple relationships between IOPs
and apparent optical properties (AOPs), and also between
IOPs and radiometric quantities such as radiance and irra-
diance from which AOPs are derived. Such relationships not
only provide a means for quick calculations, but more im-
portantly they lend insight to understanding light propaga-
tion and provide the basis for developing inversion algo-
rithms. Forward numerical models are useful for searching
for these simple relationships since they can generate an ac-
curate database that is often difficult, if not impossible, to
obtain through measurements. But relationships found in this
fashion are often unsatisfying, both because they are not
based on or verified by measurements and because they are
not derived from or connected analytically to theory.

Relationships between AOPs and IOPs are historically one
of the most intensively investigated areas of optical ocean-
ography. To date, no exact analytic equation giving an AOP
as a function strictly of IOPs and boundary conditions has
been derived rigorously from radiative transfer theory. Even
Gershun’s (1939) famous result, a = K, where a is the
absorption coefficient, K the net irradiance attenuation co-
efficient, and v the average cosine of the light field, does
not meet this criterion because this equation involves two
AOPs, namely K and p.

Starting with the steady-state radiative transfer equation
and applying the diffusion approximation of the light field,
a differential equation is derived in terms of integrated ra-
diance quantities (see Eq. 9 below). Similar differential
equations can be found in the literature on diffusion theory
(Ishimaru 1978; Morse and Feshbach 1953), although the
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notation and definitions of optical quantities differ consid-
erably from those used in modern radiative transfer theory,
and the derivations are done in various ways that do not
directly illuminate the present discussion. The derivation be-
low proceeds directly from the radiative transfer equation
expressed in a form that is most commonly used in optical
oceanography. It is then shown that a simple form of the
steady-state diffusion equation, which includes absorption,
can be derived from the rather formidable general expression
of the diffusion equation as an asymptotic limit. Equating
the solution to the diffusion equation to an equivalent ex-
pression derived from asymptotic radiative transfer theory
(Preisendorfer 1959) produces an important relationship be-
tween the asymptotic attenuation coefficient K, and certain
IOPs.

K relationships

The first analysis of K as a function of IOPs appeared in
a now declassified report by Sorenson et al. (1966). By ex-
amining a variety of ocean-optical measurements, they ar-
rived at the simple relationship K, = a + b/6, where b is
the total scattering coefficient. This simple formula was
based on data for clear ocean water and was considered valid
only in the near-asymptotic regime, where K = K, is the
asymptotic attenuation coefficient (Preisendorfer 1959). Wil-
son (1979) later showed that the Sorenson et al. functional
form gave the best fit to the available data when compared
with other published K relationships (Timofeeva and Goro-
betz 1967; Preisendorfer 1976). Wilson’s result can be ex-
pressed as K, = ¢(1 — 0.85w,), where ¢ = a + b is the
beam-attenuation coefficient and w, = b/c is the
single-scattering albedo. Drawing upon essentially the same
database that Wilson analyzed, Zaneveld (1989) reported the
three-term relationship K, = ¢(1 — 0.52w, — 0.44w,2). The
a,* term takes into account the small curvature that appears
when plotting K../c vs. o,.

Maffione and Jaffe (1995) reported K, = ¢(1 — 0.5320,
— 0.37%0:*) and K, = ¢(1 — 0.666w, — 0.280w,?) based
on an analysis of data generated by Hydrolight, a numerical
model that exactly solves the one-dimensional radiative
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transfer equation (Mobley 1994). The different coefficients
in K; and K,, were due to two different volume scattering
functions (VSF) that were used i the numerical simulations.
The VSF for K, was that measured by Petzold (1972) at his
reported station 8, and the VSF for K,, was measured at his
reported station 11. The different coefficients in K, and K|,
~ clearly show that K, is a function not only of the IOPs ¢
and w,, but also of the shape of the VSE

In a series of papers, Kirk (1981, 1984, 1991, 1994) in-
vestigated the nature of the light field in turbid, waters using
a Monte Carlo radiative transfer model. For the case of an
axially symmetric light field, e.g. sun at zenith, Kirk found
that

K,= V& ¥ Gab - )

best fit his numerically generated database. In this equation,
K, is the irradiance attenuation coefficient for downwelling
irradiance, which approaches K, far from boundaries, i.e. in
the asymptotic limit; G is a free parameter found to depend
on the shape of the scattering phase function, although no
rigorous physical meaning to G was given. Kirk modeled
the light field due to different water turbidities by varying
the ratio b/a up to a value of 200 (Kirk 1994), which cor-
responds to w, = 0.995.

It is shown here that Eq. 1 can be derived from the ra-
diative transfer equation under the diffusion (sometimes re-
ferred to as Eddington’s) approximation. The derivation re-
veals that Kirk’s parameter G is an explicit and simple
function of w, and g, the average cosine of the scattering
angle of the phase function, namely

g =2m f B(¥)cos ¢ d(cos ), @

where B(¥) is the scattering phase function. Because the der-
ivation involves the diffusion approximation, it is generally
valid only for highly turbid media, i.e. when o, is close to
one. How close to one w, has to be for the diffusion ap-
proximation to be valid is a subject of current research, but
it is generally thought that diffusion is applicable when w,
> 0.95 (Ishimaru 1978; Mobley and Maffione 1996; Zege
et al. 1991).

Kirk (1994) has pointed out that there are many interesting
and important aquatic ecosystems where the turbidity, or sin-
gle scattering albedo, of the water is exceptionally high, or,
in other words, where w, > 0.95. These systems include
areas of the ocean during coccolithophore blooms, and many
estuaries, fjords, lakes, and rivers that receive large amounts
of unconsolidated sediments. In these systems, o, depends
strongly on wavelength and will be largest in the region of
the spectrum where absorption is lowest, which is generally
in the blue-green region (~400-590 nm). At longer wave-
lengths (red and infrared), absorption rapidly increases so
that a and b become comparable, even though b is still quite
high. A natural optical medium for which w, is generally
close to unity throughout the visible spectrum is sea ice and
snow (Maffione and Mobley 1997). Thus, the results pre-
sented here should be applicable to a limited set of aquatic
ecosystems and in general to optical propagation in sea ice.

Theory

Derivation—For simplicity, the following derivation con-
siders only changes in the vertical direction z, taken to be
positive downward from the surface as is common in optical
oceanography. Moreover, anticipating the application of the
diffusion approximation, the medium is taken to be homo-
geneous, as was also done in the previously cited papers of
Kirk. That is, IOPs are independent of spatial coordinates,
although radiometric quantities such as radiance, as well as
AOPs such as K, do change with depth. As will be shown,
the diffusion approximation for radiative transfer theory is
strictly valid only in the asymptotic limit of the light field.
In the asymptotic limit, the light field is axially symmetric
(Preisendorfer 1959) and therefore depends only on the polar
angle 6 and the depth z. The derivation is thus completely
general for a homogeneous medium regardless of the bound-
ary conditions, which are irrelevant in the asymptotic limit.
Note that the derivation could have been done in three di-
mensions, but the final result, using somewhat more com-
plicated vector equations, is easily shown to be identical to
the one-dimensional derivation given here with the appro-
priate rotation of the Cartesian axes in the three-dimensional
case. This is so because in the asymptotic limit there is one
unique axis about which the light field is axially symmetric,
except of course in the case where the light field is isotropic,
in which case the two solutions are identical for any orien-
tation of the axes.

For homogeneous water illuminated by a zenith sun, or
horizontal plane wave, the radiance distribution L is axially
symmetric, i.e. is a function only of the polar angle # which
is measured from the z-axis. Moreover, L is a function of
only one spatial coordinate, in this case depth z, so that L
= L(z, 6). Considering elastic scattering only in a source
free medium, the radiative transfer equation is then given by

oL(z, 6)
s ————
0z

—cL(z, ) + b f j BWL(z, &, ¢')sin & A6’ d¢’

= —cL(z, 0) + bL(z, 0). 3)

The scattering angle ¢ is the angle between directions (',
¢') and (6, ¢), where ¢ can be any chosen azimuth angle
since L(z, 6) is independent of ¢. For example, taking ¢ =
0 gives the relation cos ¢ = cos 6 cos & + sin 0 sin ' cos
¢’'. The integral on the right-hand side of Eq. 3, denoted L,,
is called the source function because it adds radiance to the
path due to scattering within the medium. It is common in
oceanic optics to denote bL, by Lx, the so-called path func-
tion. Integrating Eq. 3 over the complete 47 solid angle
yields the one-dimensional form of Gershun’s (1939) equa-
tion, viz.

OE(z) _

P —akEy(2), C))

where
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E(z) = 277f L(z, 6)cos 6 sin 6 do
0 i

w2
= 27TU L(z, 6)cos 6 sin 6 d6
0

- f L(z, 0)|cos 6lsin 6 dé)]

w2
A

=E. (2 - E (2 (Sa)

is the net vertical irradiance and

T

Ey(z) = 2#[ L(z, 0)sin 6d0 (5b)
0

is the scalar irradiance.

The radiance distribution can be divided into the linear
combination L(z, 6) = L(z, 6) + Lz 0). The term L(z, §)
is referred to as the reduced incident radiance and represents
that part of the radiance distribution which satisfies cos 6
oLz, 6)/dz = —cL{z, 6). In other words, the reduced inci-
dent radiance is the radiance distribution that has been at-
tenuated by absorption and scattering out of the path, but
does not include the source radiance L.. The diffuse radiance
Lz, 0) is the radiance distribution that is created within the

medium by scattering, and satisfies the following equation -

of transfer:

oL,(z, 6)
cos f——
0z

—cLz 0)+b f f BWL,z ¢, ¢)sin 6@ d@' d¢’

4

+b f f BWL(z ¢, ¢')sin & d@’ d¢’

= —cL,z 0) + bL,(z, 6) + bL.(z, 0), (6)

where L, and L are the source functions due to the diffuse
and incident radiances, respectively. Clearly, L(z, §) = L(z,
0) + Lz 0) satisfies Eq. 3. Analogous to obtaining Eq. 4,
integration of Eq. 6 over the 4 solid angle gives

9E,(z) —

—aE,(z) + bE,, )
0z

where the subscripts d and i denote the irradiances due to
Lz, 0 and L(z, 0), respectively. (The subscript d should
not be confused with downwelling, which in this paper is
denoted by the “+” subscript.)

The axially symmetric radiance distribution can be ex-
panded in a Taylor series in cos 6. Thus, Lz, 6) can be
written

Lz ) =A, + Axcos 8+ . ...

If the diffuse light field is isotropic, then L, = E, /47 = A,.
A necessary, though not sufficient condition for an isotropic
light field is w, = 1 (i.e. a = 0). As w, decreases from 1,

Lfz, 6) becomes less diffuse, i.e. more peaked about § =
0°. If Lz ) is not highly forward peaked, it can be accu-
rately expressed by the first two terms in its Taylor expan-
sion. The constant A, can be found by integrating the two-
term expansion to obtain E (z), viz.

E () = 21rf L,(z, O)cos 8 sin 0 dé
0

2

E, |7 .
— cos 6 sin 6 d6
47 J,

+ A, f cos?6 sin 6 d6 do

72

47A,
3 ’
giving A, = 3E,/4m. The approximate expression for Lz,
6) is therefore

Lz 0) = %r [Eoi(z) + 3E,,(z)cos 9l )

Note that E, > E, = E,, — E_, since, for a diffuse light
field, E, , is only slightly greater than E_,. The second term
in Eq. 8 is therefore much smaller than the first term, jus-
tifying the accuracy of retaining only two terms in the Taylor
expansion.

Substituting Eq. 8 into Eq. 6 gives

dFE, oFE
s 920D | 5 o529 IED)
a 9z
= —cE,(2) — 3cE (z)cos 8 + bE,, + 3bgE, cos 8 + 4mbL,,.

®

Multiplying Eq. 9 through by cos 6 sin 6 d6 d¢ and inte-
grating over 47 leads directly to

oF
% = 3(gb — OE,(2) + bE,(2),
or
- _p%Eu@ b
E(z) = —-D ™ DE*i(Z)9 (10)
where
E,(2) = 4 f f L,z B)cos 8sin 0d0de, (11)
and
D=—1 (12)
" 3(c - gb)

As will be seen below, D is interpreted as the diffusion co-
efficient. Substituting E(z), given by Eq. 10, into Eq. 7 re-
sults in
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b oF

»E, .
% _ gE,, + ——2 + bE,, = 0, 13)
D gz

072

which is the general form of the steady-state, one-dimen-
sional diffusion equation.

As z > o, the magnitudes of the last two terms in Eq.
-13, which depend on the incident reduced radiance, decay
much faster than do the first two terms, which depend on
the diffuse radiance. This follows because, by its definition,
L(z, 6) decays exponentially with a decay constant c, the
beam attenuation coefficient. On the other hand, all L (z, 6)-
derived quantities will have an exponential decay constant
that is a diffuse attenuation coefficient, similar to the well-
known irradiance attenuation coefficients derived from the
total radiance. If b > 0, then all diffuse attenuation coeffi-
cients, denoted generically as K, must be less than c. In the
present context, w, is close to 1, so that b >> a and therefore
K, < c. Thus, for large 7 = cz, where 7 is the optical depth,
the last two terms in Eq. 13 will be much smaller than the
first two terms and can safely be neglected, leading to

D

0°E
D— — gE,, = 0. (14)
az2
Eq. 14 has the simple bounded solution
E (A7) = E,fzo)exp(—=ValD Az), (15)

where Az = z — z, and z, > 1/c, since the solution is not
valid near the boundary. For a highly scattering medium, or
turbid water with a high w,, Eq. 15 becomes increasingly
more accurate as the depth (i.e. distance from the boundary)
increases. At the same time, the light field is approaching its
asymptotic state, and does so relatively rapidly in a highly
scattering medium. In the asymptotic state, all photons have
scattered at least once, so that L,(z, 6) = L.(z, 6), where
L.(z, 6) is the asymptotic radiance distribution, which is con-
stant in shape and decays exponentially according to (Prei-
sendorfer 1959):

L.(Az, 6) = L.(z,, 6)exp(—K.Az). (16)

In the asymptotic state, all exponential decay coefficients are
constant and equal, so that the form of Eq. 16 applies equally
well for any light field quantity, including E,(z) in Eq. 15.
This implies that, far from the boundary of a highly scatter-
ing medium,

K. = ValD
= V3a(c — gb)
= V31 — w, — glw, — ®?)] )

Comparison with Kirk’s results—Kirk expressed his re-
sults in terms of the ratio b/a. In what follows, w, is used
in place of b/a, as is customary in radiative transfer theory.
The two quantities are related by

b__o
a 11— w
and
_ bla
1 + bla’

Wg

One advantage of using w, instead of b/a as a descriptor for
the relative degree of scattering, or turbidity, of a medium
is that it is bounded by 0 = w, < 1, whereas b/a is un-
bounded. Rewriting Kirk’s result, Eq. 1, in terms of w,, gives

K. =cV1 = 20, + 02 + G(w, — wy?). (18)
Equating Eq. 17 and 18 and solving for G yields
G =31 -9 + 2(l/e, — 1). (19)

Eq. 19 explains rather well the results of Kirk for highly
turbid water. He found that G was a weak function of w,, or
in his case of b/a (Kirk 1994), but exhibited a somewhat
stronger dependence on the shape of the phase function, as
described by g (Kirk 1991). This can be explained in Eq. 19
by noting that large changes in b/a for highly turbid water,
where Eq. 19 is valid, correspond to relatively small changes
in w, and hence in G. Small changes in g, however, corre-
spond to relatively large changes in the shape of the phase
function.

In the most highly turbid case that Kirk (1994) investi-
gated, namely w, = 0.995, he reported a value of G = 0.233.
In his simulation, Kirk used a phase function measured by
Petzold (1972) in San Diego Harbor, considered to be turbid
water. Computing g by Eq. 2 for Petzold’s measured phase
function gives g = 0.924. Substituting these values for g and
w, into Eq. 19 gives G = 0.238, which differs only 2% from
Kirk’s numerically simulated value of G = 0.233.

From his Monte Carlo calculations, Kirk reported that G
varied from 0.233 to 0.264, with an average value of 0.245
over the range b/a = 2 to 200, or w, = 0.667 to 0.995.
Morever, Kirk found that, when comparing K/a from his
Monte Carlo calculations with K/a computed with his ana-
lytical expression using the average value G = 0.245, they
differed by at most 2.5% over the entire range b/a range he
was considering. Thus, Kirk’s analytical expression, using G
= (.245, should provide an accurate means to easily inves-
tigate the lower bounds of w, for which the diffusion result
is valid. Figure 1 shows calculations of K/c computed with
Eq. 17 (diffusion) and Eq. 18 (Kirk) for w, from 0.95 to 1.0.
The divergence of the two curves as w, decreases illustrates
how the diffusion result breaks down as the optical medium
becomes less turbid. At w, = 0.95, the percent difference in
the two results is 14%, which is probably the upper limit for
acceptable errors in most applications where Eq. 17 might
be used. At w, = 0.98, which is probably the lower bound
for most types of sea ice, the percent error is ~4%. At higher
values of w,, the differeces fluctuate around 2%, which is
approximately the error that Kirk reports in his equation
for K.

Conclusions

The derivation of the steady-state photon diffusion equa-
tion, Eq. 14, shows that it is the asymptotic limit of the more
general diffusion equation, Eq. 13. Solutions to Eq. 14 are
therefore strictly valid only in the asymptotic limit, as z =
. Although the general solution, Eq. 15, includes absorp-
tion, it is a fundamental requirement that a < b, or w, is
close to one, i.e. the medium is highly scattering. At what
minimum value of w, Eq. 15 significantly breaks down is a
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Fig. 1. Comparison of K/c using the diffusion résult, Eq. 17,
and Kirk’s reported result, Eq. 18 in the text. In computing X with
Kirk’s equation, his reported average value of G = 0.245 was used.

subject of current research, but it is generally accepted that
w, = 0.95 is a lower limit (Ishimaru 1978; Mobley and Maf-
fione 1996; Zege et al. 1991). In highly turbid water and sea
ice, where in general w, > 0.95, the diffusion approximation
is expected to be valid for describing light propagation in
the asymptotic limit. Moreover, the asymptotic state is more
rapidly approached as w, increases, implying that the bound-
ary layer where the diffusion approximation breaks down
should be relatively thin.

Kirk has published a X relationship, Eq. 1, that was ar-
rived at by analyzing a numerically generated dataset with
a Monte Carlo radiative transfer model. The equation con-
tains a regression parameter, G, that was found by Kirk to
vary when he varied the IOPs in his simulations. Although
Kirk showed that his equation was valid over a wide range
of optical properties, including highly turbid water, his equa-
tion has a surprisingly similar form to the K equation derived
from diffusion theory, Eq. 17. Equating Kirk’s equation with
the diffusion K equation resulted in a simple relationship for
G as a function of w, and g, given by Eq. 19. Substitution
of Kirk’s values for w, and g in his simulations for highly
turbid water into Eq. 19 yielded a value of G that was within
2% of Kirk’s reported value. This gratifying result shows
that, for highly turbid water and sea ice, Kirk’s numerically
derived K relationship can be interpreted and understood
within the context of photon diffusion theory. Conversely,
applying Kirk’s result to investigate the validity of the dif-
fusion result reveals that the latter is accurate to within a
few percent of the true value of K down to w, = 0.98, with
errors gradually increasing as w, decreases. At w, = 0.95,
the estimated percent error in using Eq. 17 is ~14%. Below

w, = 0.95, the diffusion approximation rapidly breaks down,
as expected.
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